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Abstract – Simultaneous target tracking and identification 
through feature association, attribute matching, or blob 
analysis is dependent on spatio-temporal measurements. 
Improved track maintenance should be achievable by 
maintaining coarse sensor resolutions on maneuvering 
targets and utilizing finer sensor resolutions to resolve 
closely-spaced targets. There are inherent optimal 
resolutions for sensors and restricted altitudes that 
constrain operational performance that a sensor manager 
must optimize for both wide-area surveillance and 
precision tracking.  The advent of better optics, 
coordinated sensor management, and fusion strategies 
provide an opportunity to enhance simultaneous tracking 
and identification algorithms.  We investigate utilizing 
electro-optical (EO) and Infrared (IR) sensors operating 
at various resolutions to optimize target tracking and 
identification.  We use a target-dense maneuvering 
scenario to highlight the performance gains with the 
Multiresolution EO/IR data association (MEIDA) 
algorithm in tracking crossing targets.  
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1 Introduction 
   The problem of multitarget tracking and identification 

(ID) is a subset of sensor fusion, which includes filtering, 
estimation, and prediction.  One of the prominent tracking 
algorithms is the Joint Probability Data Association Filter 
(JPDAF) [1]. This algorithm seeks to track a set of objects 
from only positional information, but improvements are 
underway to use signal-detection analysis to track an 
object based on the highest signal return [2]. One way to 
enhance data association is to use EO/IR target attributes 
to mitigate clutter [3 - 7]. To further enhance the 
capabilities of the JPDAF algorithm, it would be useful for 
a sensor to not only get the position of the target, but also 
the target identity.  However, a true identity might not be 
known, so believable measurements must be used.  A 
combined track and ID algorithm can improve track 
quality, mitigate clutter confusion, and enhance target ID.    
Kinematic and ID measurements can detect, track, and 
classify targets of interest. The ultimate objective of the 
tracker includes identifying targets as they move through 
space.  In a dynamic and uncertain environment, the 
tracker must associate the correct target to the position 
measurements. All neighbors data association algorithms 
[1,  8] calculate a posteriori probabilities of allocating the  

position measurements to candidate potential targets. 
Likewise, other multisensor multiplatform fusion 
algorithms identify targets from multiple look sequences 
of sensor data [9]. The merging of these algorithms can be 
accomplished by investigating the mathematics of the 
algorithms. Track fusion uses kinematic measurements 
and ID fusion uses target-feature measurements to update 
state matrices. We seek to simultaneously track and 
identify targets by utilizing the merits of data association 
from multilevel data associations. The Joint-Belief 
Probabilistic Data Association (JBPDA) algorithm using 
Bayesian and Dempster-Shafer updates was proposed 
[10]. Similar methodologies include DSm tracking [11]. 
  Target tracking and ID utilizes both kinematic and target 
features to track targets. Many tracking algorithms either 
use kinematic information or track features to separate 
closely spaced targets. A promising strategy is to use the 
appropriate sensor resolution for the target movement 
context.  To determine the coarse information, we can 
utilize sensors at low resolutions to obtain the length-to-
width ratio of the target.  High resolution sensors capture 
the feature information used to identify the target. In either 
coarse or fine resolution, three models are necessary (1) 
target dynamics, (2) target identification, and (3) sensor. 
The target dynamics include such models as constant 
velocity or constant turn (which is utilized in an 
Interactive Multiple Model [IMM] – [1, 8, 12]) and a 
move-stop-move analysis. Target ID models assist in the 
measurement-to-track association (i.e. EO/IR sensors, 
shown in Figure 1).  Sensor models include the resolution 
and target movement. All three can update the pose 
estimate of the target for predicting the next location. 
Assuming the sensors have a fixed sampling rate, finer 
resolutions would help resolve interacting targets while 
decreasing wide area surveillance.  Obviously, there are 
more pixels on target when the sensor is in high 
resolution.  

 
Figure 1.  (a) EO image and (B) IR image of targets. 
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  One example is having an EO/IR platform where 
analysis has been applied to target recognition [13, 14, 15].  
We would want the EO to capture targets in good lighting 
conditions and IR to capture thermal images at night. An 
IR imager can be used at all times of the day, albeit, the 
performance may degrade during short thermal cross-over 
periods in the morning and evening. We would want a fine 
resolution video sensor on closely spaced targets and a 
coarse resolution on separated targets. To determine the 
tradeoffs of track filters, we can use a Markov weighting 
to determine which sensor mode and resolution, which 
target dynamic and speed model, and what fusion strategy 
for pose updates.  
 Many tracking algorithms incorporate ID information, 
either using the position to locate and detect the target [7], 
use kinematic information to facilitate target recognition 
[17] , and an intersection of kinematic and ID information 
[10, 16]. Also, there are multiresolution algorithms such as 
using wavelets [9]. To facilitate a pragmatic use of 
resolution capabilities, it would be desirable to use low 
resolution for wide area surveillance and high resolution 
to discern closely space objects.  

In data association tracking approaches, typical 
tracking is provided through position measurements. The 
problem is that the tracker must isolate the target of 
interest from the cluttered position measurements. If 
position measurement information is dense, the tracker can 
make an incorrect assignment of the position 
measurements to target tracks.  As an example, Figure 2 
below shows a case in which the position measurements 
cause the tracker to get confused.  In this case, object 1’s 
and object 2’s position measurements fall within the 
kinematic gates of both objects. 

 
Figure 2.  Data Association Problem with only Position 

Measurements. 

As we can see on the far left of Figure 2, a kinematic 
gate can isolate position measurements that are near the 
predicted measurement for each object’s track.  In the 
case that one of the true measurements falls within the 
kinematic gate of the predicted position, that measurement 
would be designated as the true position measurement.  
The position measurement of object 2 would be assigned 
to object 1’s track if position measurements from another 
object fell within the predicted kinematic gate of the 

object track as shown in the middle of Figure 2, which 
would be an incorrect assignment.  Once the tracker locks 
on to another object, or uses the position hits of the other 
object’s clutter, the tracker assumes that the hits of the 
second object are true hits for the first object as shown on 
the far right of Figure 2.   

One way to correct for this measurement-to-target 
assignment mistake is to leverage other information, such 
as the target identity to help resolve which position 
measurements are assigned to specific object tracks.  For 
example, we could use a high resolution EO/IR sensor to 
ID a moving target and use the false and true EO/IR scans 
as positional information [10]. To illustrate how the ID 
information may help in data association, Figure 3 
illustrates the process of how a target-ID can refine the 
positional measurement to select the validated 
measurement from the cluttered measurements. 

 
Figure 3.  Data Association using ID and Position 

Measurements. 

 A few tracking and ID algorithms have been 
proposed [10, 11, 16, 17]. These approaches use target track 
information to cue target recognition and detection. We 
seek to expand on this idea by allowing for a 
multiresolution capability to track targets in a wide-area 
search mode and ID relevant targets in precision tracking. 
Identification goes beyond recognition by assigning a 
single target ID to each target. In this paper, we are 
interested in controlling the sensor resolution to aid the 
track and ID process with a series of sensors.   
 This paper develops a multiresolution EO/IR track 
and identification data association (MEIDA) technique to 
distinguish between multiple moving targets in clutter.  
Section 2 overviews the EO/IR target identification fusion 
based on the data sets. Section 3 discusses track and ID 
data association. Section 4 describes the problem 
formulation and Section 5 details the mathematics of the 
algorithm.  Section 6 presents results and Section 7 draws 
conclusions.  

2 EO/IR Target Recognition & Fusion 
 In the case of day/night analysis, many surveillance 
systems incorporate both electro-optical and infrared (IR) 
camera systems to be able to capture the visible spectrum 
in the day and thermal imaging at night. EO/IR images are 



subject to the camera-to-target range.[18] In search mode, 
it would be desirable to stay far way to find targets (track 
initiation). As targets are acquired, the tracker operates in 
a track maintenance mode to follow targets; however, to 
identify the targets when they are closely spaced, the 
sensor manager must change the resolution. While each 
sensor is better for a given lighting condition, the sensor 
suite simultaneously outputs both images (see Figure 1), 
for a given resolution.  
 Synthetic target images were generated for 360 
degrees for 4 targets at three resolutions (high, medium, 
and low).  The highest resolution data was generated to 
yield 200 times more pixels on target than the lowest 
resolution, and the medium resolution had 10 times more 
pixels on target than the lowest resolution.  Each image 
can facilitate target ID. A set of training images and a set 
of test images were created for target ID. The ID consisted 
of determining the associated confusion matrix for the set 
of targets at each resolution for each of the 360 degrees.  
The resolution is a function of the range and the 
corresponding number of pixels on target is shown in 
Figure 4.  The gaps in the data are due to a percentage of 
random samples being removed from the test data to 
decrease simulation run times. Obviously, target 
recognition improves with more pixels on target.  
Although greater sensor resolution is the biggest 
contributing factor, vehicles orientation also contributes to 
the number of pixels on targets as can be scene in Figure 
4 at broadside and head and tail on perspectives. Thus, the 
target recognition would be better with higher resolution, 
but is still subject to the orientation and size of the target.  

 
 Figure 4.  Pixels on target. 
 
 The target recognition is better at the high resolution 
versus the low resolution, as shown in Figure 5. From 
Figure 5, we see that at the high resolution, the target ID is 
of higher fidelity than that of the low resolution. Since the 
EO/IR images were synthetically generated, the ID results 
were a function of operating conditions (i.e. we have 
better ID performance with fewer operating conditions of 
atmospheric, lighting, etc). The belief values were 
calculated using a Bayesian likelihood based on peak 

signal returns and target shape features. Likewise, the 
fused EO/IR results of Figure 5 are a function of selecting 
the optimum match of either the EO or the IR image 
(which we will use in the simulation – Section 6). Finally, 
a discrete selection of the target was made from a set of 4 
targets with one member of the set being an unknown 
quantity. In many cases for the low resolution, the target 
selection was unknown (many points at the origin of the 
polar plot). In this case of low belief, the tracker just uses 
the kinematic measurement, with no selection of the target 
ID to weight the measurements. 

  
Figure 5.  Target ID at low and high resolutions. 

(Different colors represent different target Pr(ID) for 
various aspects versus the target set). 

3 Track and ID Fusion 
The ability to perform track and ID fusion requires sensor-
processed classifications from different levels. These 
levels could be generic(car), feature(wheeled), type(sedan) 
or specific(license plate).  Like multitarget data 
association algorithms for accurately tracking targets in 
the presence of clutter, we assume that detected targets 
can be tracked from a sequence of center-of-gravity and 
pose positional data. However, for a given sensor/target 
scenario, we assume detected classifications can 
effectively discern target ID. ID information can be 
achieved either through experience of target movement, 
training, or predicted.  For example, identifying a target 
requires the correct orientation and speed estimate. Two 
targets of the same type may be crossing in space, but 
since they can not occupy the same location, they would 
each have a different orientation relative to a sensor. By 
exploiting the orientation, velocity, and multiresolution 
EO/IR feature information, each target can be assessed for 
the correct track-ID association. 
 The capability of a sensor to track and ID targets 
simultaneously includes finding the target center for 
tracking, determining the target pose, and searching the 
neighboring characteristics for discerning salient features 
for association to a specific target type. By partitioning 
kinematic and ID sensor data, associations at different 
levels can be used for either coarse(track) or fine (ID) 
target analysis.  For example, features [10] can be used to 
get an ID with uncertainty; however if many features are 
fused, the identity improves and helps eliminate clutter. 



The tracker must use the available features to discern an 
object (identify a target) which is a subset of Automatic 
Target Recognition (ATR). Certain features are inherently 
more useful in recognizing a target than others.  For 
instance, identifying a large car versus a small car would 
result from an analysis of the length-to-width ratio. 
However, obtaining these features is a function of sensor 
resolution. Additionally, decoupling information can be 
used for a single-platform observer to fuse information 
from a sequence of sensor data or for a multiple-platform 
scenario [9] in which fusing is performed from different 
geometrical positions. Further information on the 
development of the belief-ID derivation is found in [10]. 
 The problem of track level and ID-level fusion has 
characteristic tradeoffs about which the tracker must 
decide. For close targets, it is useful to keep an accurate 
track on multiple targets. The intelligent processor 
performs target-to-ID association at multiple levels and 
can either track targets at a low resolution or ID targets at 
a higher resolution. By leveraging knowledge about target 
types, fusion algorithms can significantly reduce 
processing time for tracking and identifying targets. For 
separated targets, resources may exist to identify each 
target. Hence, due to a limited set of resources and/or 
processor time, a trade-off exists between the 
identification and tracking of a target.  

4 Problem Formulation 
Consider an environment in which a tracker is monitoring 
multiple moving targets with stationary clutter. By 
assumption, the tracking sensor is able to detect target 
signatures. Assume that the 2-D region is composed of T 
targets with f features. Dynamic target measurements z are 
taken at time steps k, which include target kinematic and 
identification features z(k) = [x t (k), f 1,… f n].  
 Any sensor can measure independently of the others, 
and the outcome of each measurement may contain 
kinematic or feature variables indicating any target. The 
features for each sensor are similar, but need to be 
extracted and applied to the separate targets for 
classification. The probability density of each 
measurement depends on whether the target is actually 
present or not.  Further assume that a fixed number of 
kinematic and feature measurements will be taken at each 
time interval, where we model the clutter composing 
spurious measurements. A final decision from the MEIDA 
algorithm is rendered as to which [x, y] measurement is 
associated with the target-type.  
 The multisensor-multitarget tracking and 
identification problem is to determine which measured 
kinematic features should be associated with which ID 
features in order to optimize the probability that targets are 
tracked and identified correctly after z measurements. The 
multilevel feature fusion problem is formulated and solved 
by using concepts developed using the belief filter [10]. 
For the symmetric-target case, the "association rule" uses 
the measurement with the highest target probability.  

5 Track and ID Data Association 
5.1 Tracking Belief Filter  

The target state and true measurement are assumed to 
evolve in time according to: 

x(k + 1) = F(k) x(k) + v(k)  (1) 

z(k) = H(k) x(k) + w(k) (2) 

where v(k) and w(k) are zero-mean mutually independent 
white Gaussian noise sequences with known covariance 
matrices Q(k) and R(k), respectively. We assume each 
target has a separate track and set up multiple state 
equations. Spurious measurements are uniformly 
distributed in the measurement space.  Tracks are assumed 
initialized at an initial state estimate x(0), contain a known 
number of targets determined from the scenario, and have 
associated covariances [1]. 

The tracking ID filter devotes equal attention to every 
validated kinematic or ID measurement and cycles 
through measurements until a believable set of object IDs 
is refined to associate one object per track. For an initial 
set of measurements, a hypothesized number of tracks and 
objects of interest is assumed to comprise the entire set.  
Objects are possible position measurements without ID 
confirmation. Successive measurements and updates from 
the combined feature and track measurements determine 
the set of plausible targets. The measurement filter 
assumes the past is summarized by an approximate 
sufficient statistic – track state and ID state estimates 
(approximate conditional mean) and covariances for each 
object. 

The belief measurement information Bel tk  = M • Bel tk-1, 
derived from the classification measurements of the target 
image, represents the belief update states of the ID 
measurements. The M matrix is the Markov transition 
matrix, which represents the similarity of objects.  The 
similarity of objects represents how the belief in an object 
type may be related to other objects of the same or 
different type. 

The measurement-to-track association probabilities 
are computed across the objects and these probabilities are 
computed only for the latest set of measurements. The 
conditional probabilities of the joint track-ID association 
events pertaining to the current time k are defined as θjotk, 
where θjotk is the event that object center-of-gravity 
measurement j originated from object o and track t, j =1, 
..., mk; o = 0, 1, …, On, where mk is the total number of 
measurements for each time step and On is the unknown 
number of objects. Note, for purposes of tracking and ID, 
we define i = 1, … , mk for the entire measurement set 
while j = 1,…, mk is for tracking and o = 1…, mk is for 
object ID. 

A validation gate for each object bounds the believable 
joint measurement events, but not in the evaluation of 



their probabilities.  The plausible validation matrix: Ω = 
| ω jt | is generated for each object of a given track which 
comprises binary elements that indicate if measurement j 
lies in the validation gate of track t.  The index t = 0 
represents "the empty set of tracks" and the corresponding 
column of Ω includes all measurements, since each 
measurement could have originated from clutter, false 
alarm, or true object [1].  

For a track event, we have: 

| ω̂jt(θ)|  =∆ 


 1  if θi

jt ∈ θ; [z]i
k ⊂ t

0 otherwise
   (3) 

where measurement [z]i
k originated from track t 

 
For an ID-belief event, which is above a predetermined ID 
threshold,  

 | ω̂oO(θ)|  =∆ 


 1 if θi

oO ∈ θ; [Bel]
i
Ok ⇔ o

 0 otherwise
 (4) 

where measurement [Bel]
i
Ok is associated (⇔) with object 

o. 
Since MEIDA is tracking multiple objects, o, 

assuming one for each track, t, MEIDA has to determine 
the ID-belief in each object from a known database 
comparison. While these IDs are processed over time to 
discern the object, for each measurement, MEIDA must 
determine if the track-ID measurements are plausible.  
MEIDA uses the current ID-beliefs to update the 
association matrix.  If the belief in the object is above a 
threshold, MEIDA declares the measurement i, to be 
plausible for the target. Note, for plausibility, the 
threshold is lower than an ID declaration. 
 
5.2 Data Association 
Since we have assessed the continuous-kinematic 
information and the discrete-classification event, we can 
now assess the intersection of kinematic and ID 
information for simultaneous object tracking and ID. 
Note, ID goes beyond object detection, recognition, and 
classification, where we define ID as the classification of 
an object-type for a given track to associate an object 
classification to a track.  For instance, two objects of the 
same class still need to be associated with a specific track.  
We need to address feasible events for either a validated 
kinematic measurement or a validated ID. A kinematic-ID 
joint association event consists of the values in Ω 
corresponding to the associations in θjot, 

 | ω̂jot(θ)|  =∆ 


 1  if θi

jot ∈ θ *
0 otherwise

   (5) 

where (*) measurement [z]i
k originated from track t with a 

[Bel]
i
ok for a given Oot and 

  ω̂jot(θ) =  ω̂jt(θ) ⊕ ω̂oO(θ). (6) 

Note, we define the indices as jot since O is the number of 
objects which is equal to the number of tracks. 

These joint events will be assessed with “β” weights [1] 
to determine the extent of belief in the associations. To 
process the believability of track associations, augmented 
with the ID information, we set up a matrix formulation.  
For example, we have a set of kinematic measurements zi 
with a Belo and put them into the event association matrix 
as illustrated in Figure 6. The upper left of a box 
represents the track information where a “1” indicates the 
kinematic measurement lies within a gated position 
measurement. The lower right represents the belief in an 
object type of any class except the unknown class where a 
believable object receives a “1”.  Columns are for tracks 
and rows for measurements.  These generalized equations 
propagate ID-filtered, predicted ID measurements in time. 
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Figure 6. Tracking and Classification Joint Association 
 

 MEIDA processes event matrices with an “AND” 
function in the case of joint association allowing for 
plausible events from either the track or classification. 
[Note, the “OR” function could be used for high clutter, 
but was not used.] To determine the event plausibility, 
MEIDA uses the validation region for track measurements 
and uses a threshold, or classification gate, to determine a 
target-type ID match associated with a given track. Figure 
7 illustrates the “AND” function. Note, MEIDA rejects 
non-believable measurements and measurements that lie 
outside the kinematic validation gate. 
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Figure 7. Believable Events for the association matrix. 
 
 MEIDA sets up the state and probability values for 
the determination of the weights assigned to these 
associations.  A track-ID association event has [1] 

 i) a single object-type measurement from a source: 



   ∑
o = 0

On

    ω̂jot(θ
i
jot) = 1   ∀ j              (7) 

ii) and at most one object-type measurement ID 
originating from a object for a given track:  

 δt(θ) =
∆ ∑

j = 1

mk

    ω̂jot(θ
i
jot)   ≤ 1     (8) 

The event matrices, Ω̂ for each track, corresponding to ID 
events can be done by scanning Ω and picking one unit/row 
and one unit/column for the estimated set of tracks except 
for t = 0. In the case that MEIDA has generated event 
matrices for an estimated number of tracks with different 
object types, MEIDA needs to assess the combination of 
feature measurements to infer the correct number of tracked 
objects that comprise the set.  The binary variable δt( θjotk) 

is called the track detection indicator [1] since it indicates 
whether a measurement is associated with the object o and 
track t in event θjotk, i.e. whether it has been detected. 

The measurement association indicator 

  τj(θjotk) =
∆ ∑

j = 1

mk

    ω̂jot( θjotk)  (9) 

indicates measurement j is associated with the track t in 
event θjotk. 
 
The number of false measurements in event θ is 

 φ(θ) =  ∑
j -1

m

  [ 1 -  τj(θ) ]   (10) 

The joint association event probabilities are, using Bayes' 
Formula: 

P{θ(k)|Zk} = P{θ(k)|Z(k),m(k),Zk -1}  

                = 
1
c p[Z(k) | θ(k),m(k),Zk -1] P{θ(k) | m(k)}  

                =  
1
c ∏

j = 1

m(k) - φ(k)

  V {ftt(k) [zj(k)]}τj  (11) 

where c is the normalization constant. 
 
The number of measurement-to-target assignment events 
θ(k) is the number of targets to which a measurement is 
assigned under the same detection event [m(k) - φ].   The 
target indicators δt(θ) are used to select the probabilities of 
detecting and not detecting events under consideration. 

5.3 Fused Track and ID State Estimation 

Assuming the targets conditioned on the past observations 
are mutually independent, the decoupled state estimation 
uses the marginal association probabilities, which are 
found from the joint probabilities by summing all the joint 
events in which the marginal track and classification events 
result.  The beta weights [1] are: 

  β
t
jok =

∆ P{θjotk
 | Zk}   

  = ∑
θ

 

  P{θjotk | Zk}ω̂jo(θjotk) (12) 

MEIDA decomposes the object-state estimation with respect 
to the location of each object of the latest set of validated 
belief-set and kinematic-set measurements.  The 
measurements have been used to get the classification 
beliefs in the object types, to set up a simultaneous tracking 
and ID recursion for each object in the set, where ID is the 
classification of each object for a given track of data. For 
each object measurement, we use the total probability 
theorem to get the conditional mean of the state at time k can 
be written as: 

 X^  t
k|k = ∑

i = 0

 
m

o
k

  X^  ti
k|k βti

k , (13) 

where X^  t
k|k is the updated state conditioned on the event that 

the ith validated object measurement is correct for track t.  The 
covariance propagation is:  

 Pt
k|k-1 = Ft

k-1 Pt
k-1  (Ft

k-1)T  + Q
_ t

k-1, where Q
_

 k = 




Qk 0

0 Bk
 

for each track t. 

  We can obtain the innovation covariance Sk with the 
associated Rk and measured Dk by: 

 St
k = H

ot
k  Pt

k|k-1 (H
ot
k )T  + R

_
 tk, where R

_
k = 





Rk 0

0 Dk
 

Since Sk is the innovation covariance update, we can use Sk 
to gate measurements based on the uncertainty with the 
associated track and IDs. 

Validation: At k, two measurements are available for 
object o for a given track t: z

T
k-1, and z

T
k, from which 

position, velocity, pose, and ID features can be extracted 
form the belief track vectors. Validation, based on track 
and ID information, is performed to determine which track-
belief measurements fall into the kinematic region of 
interest. Validation can be described as 

 (zt
k - ẑ

lt
k|k-1)T [St

k]-1 (zt
k - ẑlt

k|k-1) ≤ γ   for l = 1 … m
o
k (14) 

where γ is a validation threshold obtained from a χ2 table 
for a degree of freedom of 14 (4 for kinematic states and 10 
for target beliefs) and Sk stands for the largest among the 

predicted track belief covariance, i.e., det(Sk) ≥ det(St
k) for t 

= l,2,...,n where n is the number of states.  The combined 
predicted track belief, ẑk|k-1, is given by 

E{zk|{βs}s
o = 1, Zk-1} where s is the set of object beliefs for 

a track. 



Data association for βti
l  : Data association performed for 

each belief object-track is similar to that in PDA and the 
details can be found in [1]. The association probabilities for 
l validated object measurements are: 

 β t
l   = 

et
l

b + ∑
l = 1

m
o
k 

  et
l

, l = 1, 2, …, mo
k  (15) 

 β t
0  = 

b

b + ∑
l = 1

m
o
k 

  et
l

  , (16) 

 where et
l  = P-1

G N(0, St
k ) (17) 

  b  = mo
k ( 1- PDPG) [PDPGVk]- 1  (18) 

with mo
k defining the number of validated object 

measurements, PG assessing the probability that augmented 
belief track measurements fall into the validation region, 
and PD representing a detection probability.  For the 
MEIDA case, we vary the innovation covariance (Sk), PD, 
PG proportionally to the sensor manager collection 
resolution (i.e. higher resolution → higher PD, higher PG, & 
lower Sk).  The lower Sk for the higher resolution is a result 
of changing the prediction, which results after a few track 
instances. The volume of the validation gate is 

 Vk = Cd γd/2 |Sk| 1/2, (19) 

where Cd is the unit hypersphere volume of dimension d, the 
dimension of the augmented belief-track measurement. 

Kinematic belief-probabilistic update: The object belief-
probabilistic track update is performed as a full rate system 
to combine the state, innovation, and covariances. 

 X^ t
k|k = X^ t

k-1|k-1 + W t
k ∑

l = 1

m
o
k

  βt
lk ν

t
lk   (20) 

and 
 Pt

k|k = β t
0 Pt

k|k-1 + (1 - β t
0) P*

k|k +  

 W t
k 








∑
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   β t
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t
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k[ν

t
k]

T  (Wt
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T (21) 

where

 P*
k|k = [ ] I - W t

k H
ot
k  Pt

k|k-1 and νk = ∑
l = 1

m
o
k

  β t
lk νt

lk (22) 

 Wt
k = Pt

k|k-1 [H
ot
k ]T (St

k)-1   (23) 

 where H
ot
k  is the measurement matrix that is calculated for 

each object pose, φ, and estimated position of track t. 

6 Initial Results 
The MEIDA track and ID method is evaluated with a 
Monte Carlo simulation and the performance metric is 
position state error (i.e. RMS). The ID information is a 
result of the fused EO/IR discrete result where the 
aggregated comparison between true image versus 
corresponding images over a 20 degree window for the 
various targets. The probability results from the 
normalized number of discrete selections over the 
comparisons (t targets, d degrees). The high resolution 
case results in better probabilities than the low resolution 
case.  As detailed in the Figure 8 below, by the true 
trajectory; the targets 1) start with position and velocity, 2) 
pass by each other at a close distance, and 3) finish with a 
specified direction. There was added noise to the true 
target position and clutter comprised of 5 spurious 
measurements around a target.  Even with closely spaced 
targets, the MEIDA tracker was able to locate, track, and 
identify the targets with clutter. 

 
Figure 8.  Tracking scenario with noise. 

Figure 9 shows the JPDAF effectiveness when targets 
are separated by a large distance. The separation allows 
for the determination of a validation gate size that 
associates the correct measurements to tracks. However, 
as targets are close, the tracker combines all the targets 
into one track, due to the clutter.  

 
Figure 9.  Tracking without ID information. 

Figure 10 shows the same case as Figure 9 with 
identification information that helps the tracker better 
associate the true position measurements from clutter.  



Target beliefs increased throughout the run as the target 
was repeatedly identified as the same target.  

 
Figure 10.  Tracking with ID information. 

Note, as the covariance grows in target position 
estimate, the sensor manager switches from a low-
resolution mode to a high-resolution mode to better 
discern the target types. As targets separate, the 
covariance decreases and the sensor manager switches 
back to the low-resolution mode (show in Figure 11). 

 
Figure 11.  Tracking with ID covariance information. 

7 Discussion & Conclusions 
Conventional measurement tracking techniques have 
difficulty with data association when position 
measurements are close. The MEIDA algorithm, which 
uses the identification information from an EO/IR sensor 
suite, helps to associate the correct measurement to the 
correct targets. In the presence of clutter, the novel 
algorithm utilizes parsimony for processing by 
incorporation of covariance information to select sensor 
resolution. The MEIDA can be utilized in a time-
constrained weak-sensor scenario to get a general target 
location and a positive ID (cued high resolution) that can 
be used to augment a data association tracker.   

In a series of simulation experiments, the MEIDA 
performed well resulting in a desirable solution for closely 
spaced moving targets, and at a faster rate than 
conventional tracking methodologies. The faster rate 
resulted from a reduction in the gate size to eliminate 
clutter. The presented technique demonstrates promise for 
multitarget tracking problems and warrants further 

exploration in problems where environmental effects, 
occlusions, lost sensor data, and unknown targets require a 
sensor manager to control sensor resolution to optimize 
tracking performance. Future work will explore the 
sensitivity of the results to a higher fidelity EO/IR target 
recognition algorithm over more operating conditions and 
utilize methods that afford track initiation (i.e. IPDA [8]). 
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